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Coupled higher-order nonlinear Schrodinger equations in nonlinear optics:
Painlevé analysis and integrability
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A set of coupled higher-order nonlinear Schrddinger equations which can be derived from the elec-
tromagnetic pulse propagations in coupled optical waveguides and in a weakly relativistic plasma with
nonlinear coupling of two polarized transverse waves is proposed. Using the Painlevé singularity struc-
ture analysis, we show that it admits the Painlevé property and hence we expect that it will exhibit

soliton-type lossless propagations.
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INTRODUCTION

Electromagnetic wave propagation through nonlinear
media has attracted the attention of nonlinear physicists
in recent years. In particular, propagation in the form of
localized pulses, i.e., solitons, through the fiber medium
has important applications in communication systems
[1-3]. The reason for this is due to the fact that these
pulses, propagating without distortion or spreading for
long distances, called optical solitons, observed experi-
mentally since 1980, offer the possibility of achieving very
high data transmission rates in optical fiber communica-
tion systems. They are considered as the future optical
bits. These prospects motivate important research efforts
towards the development of nonlinear aspects in optics.
For example, slowly varying electromagnetic waves in a
nonlinear medium are described by the nonlinear
Schréodinger (NLS) equation [3-5] which also arises in
various physical systems such as water waves, plasma
physics, solid state physics, and so on. A further interest-
ing fact regarding the nature of optical solitons in a fiber
is the observation of higher-order effects which cannot be
described by the NLS equation. An example of this
higher-order effect is the Raman process which exists
within the spectrum of a soliton. Recently, Kodama and
Hasegawa [6] introduced a generalized higher-order NLS
(HNLS) equation which takes care of the higher-order
effects. The equation is of the form

J
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where a,, a,, and a; represent the linear dispersion
coefficient, the Kerr coefficient, and the coefficient of Ra-
man scattering, respectively. Note that the independent
variables and the parameters in Eq. (1) are different from
the actual notations. In general, Eq. (1) is not completely
integrable. However, if some restrictions are imposed on
the parameters, one can obtain several integrable soliton
possessing NLS type equations: (i) €=0, NLS; (ii)
a:a:a;=0:1:1, derivative NLS; (ii) a;:a,:a;=0:1:0,
derivative mixed NLS; and (iv) the Hirota equation
(a;:a:a3=1:6:0) and the Sasa-Satsuma case [7,8]
(a;:ay:a3;=1:6:3). Recently, using the singularity struc-
ture analysis, it has been shown that Eq. (1) is completely
integrable only for the choices a;=1, a,=6, a;=3 [8].

The main objective of the present work is to generalize
the above equation. There are several ways to generalize
Eq. (1) to a set of coupled evolution equations, depending
on the physical situation being modeled [1-4]. One such
possibility in nonlinear optics is the following.

Let us represent E as a sum of right- and left-handed
polarized waves. E=q,e; +qg,€e;, where ex and e, are
the complex unit vectors corresponding to right-handed
and left-handed polarizations [3]. Using the orthogonali-
ty of ex and e;, the general form of the coupled HNLS
equation is given by

igy, (1)1 g P+ 1g,10)g) Hiefa,q 0 Har(lg P +1g,10)g,, +asq (1g,1*+1g,1%),}=0,

igy + (£ + (g, >+ 19, 12)g; Hie{aiga, +ay(lg 1>+ 1,17, +asq,(1q, [*+1g,1),}=0 .

(2)

The other physical applications of the above model will be published elsewhere.

Recently, the coupled NLS equations have been the focus of intense attention. Due to the complexity of the nature
of the problem, only a little progress has been made in understanding the dynamics of the coupled nonlinear evolution
equations. Some of the well studied coupled nonlinear Schrédinger equations in nonlinear optics are the following:

(1) The coupled NLS equations [1-3,9-14],
iq1,+(3)q15 + (g, 17 +1g,1)g, =0,
ig +($)050 + (g1 1> +1g,1%)g,=0 .

1063-651X/94/50(2)/1543(5)/$06.00 50

(3)
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(2) The coupled Hirota equations [17,18]
i41r+(%)qlxx+('41 12+ "12|2)¢11 tFi€fq o T3(g, 1>+ |42|2)‘11x +3(9191x+9392:)9,} =0,

4)
igy +($oxx (1911241421102 +i€{q00ex +301g1 P+ 10202, +3(a 191, +43422)92) =0 ,

which, in the limit e—0, is the case (1) [Eq. (3)] discussed above. Manakov [3] found the explicit soliton solutions to
equations (3) with equal self and cross phase modulations. Solitary waves in the coupled NLS equations, including the
nonintegrable case, are also of interest [10—16]. The Painlevé analysis of Egs. (3) was carried out in Ref. [9]. Recently,
the soliton solutions of Eqs. (4) were discussed in detail through the inverse scattering method [17]. The main aim of
this paper is to establish the Painlevé property and other integrability aspects of Eq. (2). Along the lines of Refs. [7,8]
we choose a; =1, a,=6, and a;=3. For this choice of parameters, Eq. (2) becomes

iy, +(1)g 10 (g, 1P+ g2 1)g, +i€{q nx +6(1q:1*+ g2 1P)q,, +3q,(Iq,1*+g,1*), 1 =0,

i‘12r+(%)‘l2xx+({‘1112+|‘12|2)‘12+i6{42xn +6(|41 |2+|‘12|2)‘12x+3‘12(\Q1|2+|‘]2|2)x j=0.

PAINLEVE ANALYSIS

As the nature of the dynamics of Egs. (5) are not known, we first apply the Painlevé (P) analysis to Egs. (5) to identify
the Painlevé property which then leads to the integrability properties. The P analysis is one of the systematic methods
to identify the integrability cases of the nonlinear partial differential equations [19-24], i.e., the solutions which are free
from movable critical manifolds.

The method for applying the Painlevé test introduced by Weiss, Tabor, and Carnevale [20] with simplifications due to
Kruskal [21] involves seeking a solution of a given partial differential equation in the form

g(x,0)=¢* 3 q;(t)'(x,1), qu70
j=0

with
d(x,t)=x+(t)=0, (6)

where ¥(t) is an arbitrary analytic function of ¢, and ¢ (1), j=0,1,2,..., is an analytic function of ¢, in the neighbor-
hood of a noncharacteristic movable singularity manifold defined by ¢=0.

In addition to providing a valuable first test for whether a given partial differential equation is completely integrable,
other important informations relating to completely integrable equations can also be obtained from the Painlevé
analysis, including the Backlund transformation, Lax pair, Hirota’s bilinear representation, special and rational solu-
tions, etc. [20-22]. Many of these results are obtained by truncating the Laurent series at a constant level term [23,24].
At this juncture, we would like to point out that the above integrability properties have been constructed only for un-
coupled nonlinear partial differential equations. The construction of the Lax pair is still an open question for the cou-
pled evolution equation.

In order to investigate the integrability properties of Egs. (5), we rewrite it in terms of four complex functions a, b, c,
and d by defining ¢, =a, g =b, g, =c, g5 =d. Consequently, we have the following equations:

ia,+(1)a,, +(ab+cd)a+iefa,,, +6(ab+cd)a, +3(a,b+b,a+c,d+cd )a}=0,
—ib,+ ()b, +(ab+cd)b—ie{b, , +6(ab+cd)b,+3(a,b+batc,d+cd, )b}=0,

ic,+({)e,, +(ab+cd)e +iefc,,, +6(ab+cd)c, +3(a,b+ba+c,d+cd, )c}=0,
—id,+($)d,, +(ab+cd)d —ie{d,,, +6(ab+cd)d, +3(a,b+b,a+tc,d+cd, )d}=0.
Looking at the leading order behavior, we substitute a ~ay¢”, b ~by¢9, c ~cy¢", d =dy¢° in Egs. (7) and balancing
the different terms, we obtain the following results:
P =q =pr=5g=—1 s

agbgtcodo=—1 .

(8)

For finding the powers at which the arbitrary functions can enter into the series, we substitute the expressions,
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a=agp ' +a; ¢ 7",
b=byp '+b;¢/ ',

9)
c=cop 't/ !,
d=do¢~'+d;¢' ",
into (7) and, keeping the leading order terms alone, we obtain the determinant in the form
(=D —2)j—3)
+(9j —24)ayb, (3j —12)a} (3j —12)ayb, (3j —12)aycg
+(6j —12)cod,
(=D —2)0j—3)
(3j —12)b}3 +(9j —24)ayb, (3j —12)bod, (3j —12)bgycq
+(6j —12)cody
(=1 —2)(j —3) —0. (19
(3j —12)bye (3j —12)aycg +(9j —24)cod, (3j —12)c3
+(6j —12)ayb,
(=D —=2)j—3)
(3j —12)byd, (3j —12)ayd, (3j —12)d3 +(9j —24)cod,
+(6j —12)ayb,
(11)
Using (8) in (10) and solving the determinant, we obtain
j12—24j"14245j'0—1374/°+4524;% — 84247+ 66566+ 3840;° — 11264*+6144°=0 .
Solving Eq. (11), the resonances are found to be
j=-—10,0,0,2,2,2,3,4,4,4,4 . (12)

For each resonance value, there is a compatibility condition which must be identically satisfied so that Egs. (5) have a
general solution of the form (9). The resonances j =—1 and j =0,0,0 correspond to the fact that ¢(¢) is arbitrary, and
that there is only one equation defining a,, b, ¢, and d, (so three, say, b, ¢y, and d, are arbitrary), respectively.

Proceeding further and equating the coefficients of (¢ ~%,¢ 3,6 3,4 3), we obtain

3aghy—1  3a} 3a,d, 3a,c, a, —a,
3b3  3agby—1 3byd, 3bycq b, _1 | bo
3bge 3agey  3aghy—1 3¢} < " 6ie —¢Co (13)
3bod, 3ayd, 3d}  3agby—1| |9 dy

From (13), we get

a,=—ay/6ie ,
b,=by/6ie , 14
¢, =—cy/bi€e,
d,=d,/6ie .

On the other hand, the coefficients of (¢ 2,¢ 2,624~ 2) in Egs. (5) reduce to a single equation
boaz+a0b2+docz+cod2=%‘:—¢, (15)

so that three of the four functions a,, b,, ¢,, and d, are arbitrary which corresponds to j =2,2,2.

Similarly from the powers of (¢~ ',6 1, 1,6 ') and (4°¢° ¢° ¢°), we find that Egs. (5) admit the sufficient number
of arbitrary functions and hence Eqgs. (7) possess the Painlevé property and hence they are expected to be integrable.
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Once the integrability is proved, one can construct the integrability properties by truncating the Laurent series at a
constant level term. Though it is possible to construct the integrability properties such as the Béacklund transforma-
tions, (BT) and bilinear forms from the P analysis, the construction of the Lax pair for the coupled NLS type equation is
still an open question. For the construction of the auto BT, we truncate the series (9) up to a constant level term, i.e.,

J’bj,
a=ayp '+a;, b=byd '+b,,
c=co¢_l+c1, d=d0¢_‘+d1 s

where (a,a,), (b,b,), (c,c,), and (d,d,) satisfy Egs. (7). So,
construction of the Lax pair from the truncation of a Laurent

for further discussion we restrict to the construction of a bilinear form for Egs.

a,=b,=c,;=d;=0 and using (16) in (7), we obtain the follow

» and d; are equal to zero for j 2. Thus, the associated BT leads to

(16)

Egs. (16) may be treated as a auto BT of Egs. (7). As the
series is very difficult for the coupled NLS type equations,
(7). For this, we assume
ing set of equations

Aaq )+ 5 5 Dag )+ ¢2[F+D3(¢'¢)]+“;%D3(ao'¢)
618 ao-$)D2b-6)— 3"’[4& (agd)+agd,DA¢-¢)]=
—i';u,(bo-db +;;:2—D2(b0'¢)+£%[r+1)3(¢'¢)] e D;(by-¢)
+%£D (bo-¢)DX$-¢)+ Zf [43Dx(bo¢)+bot, Di(¢-¢)]=
: D y(cod)+ ; D2(cy-d)+ ¢‘;[r+03(¢.¢)1+;—§p,§(e0.¢)
—%D co-$)DHb¢)— 3le[qSZD (co'$)+cod, Di-¢)]=
—-(;;D,(do-qs +—2?D (dy- ¢)+%[1‘+D (¢-4)]— & éz 2(do¢)
bie € (62D (dy-¢)+dod, D2 b-0)]=

+¢—D (dy®)D2(¢-d)+

where I'=ayb, +cyd, and the D operators are defined by

8 2 |"[a _

a*  ar dx

D!'DI"a-b= Pl ICCRICNY)

By equating the different powers of ¢ to zero, after some
simplifications, one can get Hirota’s bilinear operators
and also construct the N-soliton solutions in the usual
way.

CONCLUSIONS

In this paper, we have formulated a more generalized
set of coupled higher-order nonlinear Schrodinger equa-
tions which can be derived from nonlinear optics by con-
sidering the electromagnetic wave E as a sum of right-
and left-hand polarized waves. The same equations can
also be derived from a weakly relativistic plasma with
nonlinear coupling of two polarized transverse waves.
Then, by choosing the parameters as in the case of the
corresponding integrable uncoupled case, we applied the

a7

x'=x *

"=t

f

Painlevé singularity structure analysis and established
that for this particular choice of parameters, the pro-
posed equations possess the Painlevé property. As the
system of proposed coupled equations admit the P prop-
erty, we expect that they will admit the soliton type of
propagations. Future papers will focus mainly on the
construction of the linear eigenvalue problem and soliton
solutions of Egs. (5) and other integrability cases of the
generalized equations (2).
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